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A B S T R A C T

Previous research has recently indicated that TLR7 is able to induce CD4+T cell anergy, which is the opposite of
the role it plays in innate immune cells. Therefore, TLR7 ligands may be used as a manner in which to induce
CD4+T cells “tolerance” in autoimmune diseases. T follicular helper (Tfh) cells were demonstrated to be a subset
of CD4+T cells that help B cells produce antibodies. The abnormal activity of Tfh cells, though, is their function
as a primary pathogenic factor in systemic lupus erythematosus (SLE). However, the role of TLR7 in Tfh cells is
not clear. Our study was aimed at determining the influence of TLR7 on Tfh cells in a murine model of SLE
(MRL/lpr mice). We were surprised to find that the frequency of Tfh cells and germinal center (GC) B cells was
significantly reduced after treatment with the TLR7 agonist imiquimod. Imiquimod also significantly reduced the
expression of inducible costimulatory molecule (ICOS) and programmed death 1(PD-1) in Tfh cells and de-
creased IL-21 secretion. Moreover, imiquimod significantly reduced the mRNA expression of several transcrip-
tion factors, including Bcl-6, c-Maf, Batf3, Nfatc2 and Stat3, and enhanced the expression of Prdm1 and Stat5b in
CD4+T cells. Imiquimod also ameliorated the progression of SLE in MRL/lpr mice by inhibiting anti-dsDNA
antibodies and antinuclear antibody (ANA) secretion in the serum. Our findings indicated that TLR7 inhibited
the development of Tfh cells both in vivo and ex vivo, which depended on many transcription factors aside from
Bcl-6. Our results demonstrated that a TLR7 agonist has the potential to be used to inhibit Tfh cell responses
during SLE.

1. Introduction

Toll-like receptors (TLRs) act as a bridge between microorganisms
and host cells by recognizing specific pathogen-associated molecular
patterns (PAMPs) expressed in distinct microorganisms [1–5]. Inter-
estingly, some TLRs have been found to be expressed on T cells [6].
PAMPs can induce the survival of activated CD4+T cells, which sug-
gests that TLRs on T cells can directly modify adaptive immune re-
sponses [7–11]. However, a recent report has elucidated that the
function of TLR7 in CD4+T cells is in absolute opposition to the role it
plays in innate immune cells, which has described a new pathway
mediated by TLR7 that suppresses the activity of CD4+T cells [12]. By
inducing a calcium flux in CD4+T cells, TLR7 can induce anergy in

these cells [12]. The activation of the genes involved in inducing anergy
was dependent on the transcription factor Nfatc2 and resulted in sub-
sequent T cell unresponsiveness [12].

Although the function of TLR7 in T cell activation has been ex-
tensively studied, little is known about the stimulatory effect of TLR7
on Tfh cells. Located in the germinal centers (GC), Tfh cells play im-
portant roles in the regulation of the adaptive immune response [13].
There are some surface molecules that are highly expressed on the
surface of Tfh cells, including C-X-C chemokine receptor type 5
(CXCR5), programmed death-1 (PD-1), and inducible costimulatory
(ICOS) molecule [14–18]. The function of Tfh cells is to regulate the
differentiation of GC B cells to memory B cells and plasma cells. Unlike
other CD4+T cells, Tfh cells can express BCL-6 and produce functional
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cytokines, including IL-21 [19–21]. CD4+CXCR5+ICOShighPD-1high

cells are defined as circulating Tfh cells and were found to be increased
in the peripheral blood of newly systemic lupus erythematosus (SLE)
sufferers. Tfh cells have long been implicated in SLE pathogenesis. In
sanroque mice, the proportion of circulating Tfh cells has a strong
correlation with their GC counterparts, which makes Tfh cells a feasible
human biomarker for this novel mechanism of a breakdown in GC
tolerance [22]. Both the regulation of Tfh cell differentiation and GC
reactions may be potential regulatory mechanisms to sustain immune
tolerance and prevent the progression of SLE [22].

In this study, we aimed to identify the influence of TLR7 on Tfh cells
during SLE. To accomplish this, we utilized a murine model of SLE
(MRL/lpr mice), which spontaneously develop a characteristic
symptom similar to SLE in humans. We demonstrated that TLR7
mediated the negative regulation of the Tfh cell response. Our studies
found that engaging TLR7 decreased the frequency of Tfh cells in MRL/
lpr mice via regulating certain transcription factors, such as by Bcl-6,
Blimp-1, and Stats. Our results elucidated the mechanism by which
TLR7 inhibits the immune response, which occurs through the regula-
tion of transcription factors, interference with GC B cells, and produc-
tion of antibodies in the presence of signaling via TLR7.

2. Materials and methods

2.1. Mice

6–8 weeks old female MRL/lpr mice were purchased from the
Shanghai SLAC Laboratory Aniaml Co., Ltd, and 6–8 weeks female old
BALB/c mice were purchased from Beijing Vital River Laboratory
Animal Technology Co., Ltd. All mice were housed under specific pa-
thogen- free conditions in the Ningxia Medical University Laboratory
Animal centre of Ningxia Medical University. All mouse procedures
were approved by the Institutional Animal Care and Use Committee of
the Ningxia Medical University.

2.2. CD4+T cell purification and Tfh cell differentiation

Splenocytes were obtained from BALB/c mice (6–8 weeks old; fe-
male). Total CD4+T cells were isolated by negative selection using a
CD4+T cell isolation kit (19852; StemCell Technologies). Purified
CD4+T cells were activated in 96-well plates (NY14831; Costar) coated
with a CD3ε monoclonal antibody (mAb) (1.0 μg/mL) for 16 h. For the
differentiation of Tfh cells, IL-21 (594-ML-010/CF;R&D SYSTEMS)
(10 ng/mL), IL-6 (554582; BD Biosciences) (10 ng/mL), and CD28 mAb
(553294; BD Biosciences) (1.0 μg/mL) were added to the cells with or
without imiquimod at concentrations of 0.1, 1, 2.5, or 5 μg/mL (99011-
78-6; Invivogen). At day 3, the cells were collected for flow cytometry
and Taqman PCR (q-PCR), and the supernatants were collected for
analysis via ELISA.

2.3. Murine experimental model

To examine the response of Tfh cells to a TLR7 agonist in vivo, MRL/
lpr and BALB/c mice (16 weeks old; female) were randomized into two
groups. Each group received intraperitoneal injections every other day
for 4 weeks as follows: (1) 0.05 mg/kg of imiquimod (Purity > 99%,
99011–02-6; MedChem Express), a compound of the imidazoquinadine
family and a TLR7 agonist, in 100 μL of normal saline of 1% DMSO
(D2650;Sigma-Aldrich, Steinheim, Germany); (2) 100 μL normal saline
of 1% DMSO. All of the mice were euthanized at the age of 20 weeks.
Blood, spleen, and kidney tissues were collected for future analysis.

2.4. Flow cytometry analysis

For the detection of the proportion of Tfh cells and costimulatory
molecules of Tfh cells, total CD4+ T cells were isolated by negative

selection using a CD4+ T cell isolation kit. The isolated cells were then
stained with a FITC-conjugated anti-CD4 antibody (553047; BD
Biosciences), APC-conjugated anti-CXCR5 antibody (560615; BD
Biosciences), PE-conjugated anti-PD-1 antibody (551892; BD
Biosciences, and BV421-conjugated anti-ICOS antibody (564070; BD
Biosciences) for 30 min, followed by PerCP-Cy5.5- conjugated anti-BCL-
6 intracellular staining (563581; BD Biosciences) using a FoxP3 staining
kit (00-5523-00; eBioscience). For the detection of GC B cells in mice,
PBMCs were stained with an AF488-conjugated anti-B220 antibody
(557669; BD Biosciences) and AF647-conjugated anti-GL-7 antibody
(561529; BD Biosciences) for 30 min. For the detection of IgG1 plasma
cells in mice, PBMCs were stained with a FITC-conjugated anti-CD19
antibody (557398; BD Biosciences) and PE-conjugated anti-IgG1 anti-
body (550083; BD Biosciences) for 30 min. Cell acquisition was per-
formed on a FACSCelesta™ flow cytometer (BD FACSCelesta™).

2.5. Cytokine and autoantibody titer analysis using ELISA

Cytokines and antibody in supernatants or serum were measured by
ELISA (IL-21 kit from (JL20239; J&l Biological) and others from
eBioscience.

2.6. Taqman PCR analysis

RNA was isolated from CD4+T cells using an RNeasy Micro Plus Kit
according to the manufacturer’s guidelines (DP419; Tiangen). RNA was
converted to cDNA by reverse transcription with random hexamers and
Multiscribe RT (#1622; TQMN, Reverse Transcription Reagents;
Applied ThermoFisher). For mRNA expression assays, the following
probes were used (all from Applied ThermoFisher):Il-21,
Mm00517640_m1; Bcl-6, Mm00477633_m1; c-Maf, Mm02581355_s1;
Stat3, Mm01219775_m1; Batf3, Mm01318274_m1; Prdm1,
Mm00476128_m1; Stat5a, Mm03053818_m1; Stat5b, Mm00839889_s1;
Nfatc2, Mm01240677_m1; b-actin, Mm02619580_m1. The reactions
were set up following manufacturer’s guidelines and were run on a
StepOne Real-Time PCR System (Applied Biosystems). Values are pre-
sented as the difference in cyclineg threshold (Ct) values normalized to
those of mRNA encoding β2-microglobulin for each sample, calculated
by the following formula: relative RNA expression = (2–ΔCt) × 103.

2.7. Histopathology test

The kidneys were fixed with a 4% neutral-buffered formalin fixative
(Top0382; Biotopped) overnight at 4 °C and then rinsed for 2 h in
distilled H2O. The kidneys were stored in 70% ethanol and then em-
bedded in paraffin (LeicaB; 39601095). For histopathological ex-
amination, 4-µm-thick paraffin sections were stained with hematoxylin
and eosin (HE).

2.8. Immunofluorescence evaluation of IgG deposits in kidney

Kidneys were embedded in OCT compound and snap-frozen at
−70 °C. Frozen kidney sections (6 µm) were fixed in acetone, washed
with phosphate buffered saline (PBS), blocked with 10% goat serum in
PBS for 30 min, and stained with FITC-conjugated goat anti-mouse IgG
(ab7064; R&D).

2.9. Statistics

All data were subjected to statistical analysis using Prism software
version 6 (GraphPad). Comparisons between two groups were per-
formed by 2-tailed t-test (parametric) or paired t-test (non-parametric).
Comparisons between multiple groups were performed using a 1-way
ANOVA with Bonferroni’s multiple comparison tests. A P < 0.05 was
considered signifificant.
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3. Results

3.1. Imiquimod treatment reduced the response of Tfh cells in vitro

Purified CD4+T cells were stimulated for 3 days with CD3εmAb,
CD28 mAb, IL-21, and IL-6 in the presence or absence of the synthetic
TLR7 agonist imiquimod (Supplementary Fig. 1). We analyzed the ex-
pression of molecules on Tfh cells by flow cytometry. Our results im-
plied that the frequency of CD4+CXCR5+T cells was significantly de-
creased in a dose-dependent manner after intervention with imiquimod
(Fig. 1a and Supplementary Fig. 2b). The expression of Tfh cell surface
markers, such as ICOS and PD-1, was inhibited by imiquimod in a dose-
dependent manner (Fig. 1a and Supplementary Fig. 2c-d). Tfh cell
differentiation is critically dependent on BCL-6 expression; thus, we
also analyzed the proportion of BCL-6 after treatment with the synthetic
TLR7 agonist imiquimod (Supplementary Fig. 2e). Our results showed
that treatment with imiquimod resulted in a significantly decreased
expression of BCL-6 in Tfh cells as compared to that of vehicle-treated
control cells (Fig. 1a). Additionally, the concentration of IL-21 was
significantly decreased in a dose-dependent manner as compared to
that of the vehicle control (Fig. 1b). We also analyzed the mRNA ex-
pression of Bcl-6 and Il-21, which was consistent with the protein ex-
pression (Fig. 1b–c).

We also determined whether stimulation with imiquimod

influenced other transcription factors associated with Tfh development
and function. We analyzed the gene expression of several other tran-
scription factors by qPCR after 72 h post-imiquimod treatment. It is
important to note that imiquimod differentially downregulated c-Maf,
Batf3, Nfatc2, and Stat3 in CD4+T cells. However, imiquimod stimu-
lation upregulated the mRNA expression of Prdm1 (which encodes
Blimp-1, a transcription repressor that inhibits Tfh generation) and
Stat5a/5b (Fig. 1c).

3.2. TLR7 signals minimized the response of Tfh cells in BALB/c mice

We treated BALB/c mice (female; 16 weeks of age) with imiquimod
for 4 weeks and then examined if TLR7 signals influenced the response
of Tfh cells in vivo (Supplementary Fig. 3). We found that the frequency
of Tfh cells was significantly reduced after treatment with imiquimod
(Fig. 2a and Supplementary Fig. 4). IL-21 has a critical effect on Tfh and
B cells, including GC formation. Thus, we then measured the levels of
IL-21 in the sera from BALB/c mice. Our results showed that the levels
of IL-21 were downregulated after treatment with imiquimod (Fig. 2c).
The expression of Il-21 mRNA in CD4+T cells was also decreased
(Fig. 2c). We analyzed several transcription factors after treatment with
imiquimod, and the results were consistent with our ex vivo results. The
expression levels of Bcl-6, c-Maf, Nfatc2, and Stat3 were downregulated;
however, the expression levels of Prdm1 and Stat5a/5b were

Fig. 1. Effects of TLR7 agonist imiquimod (IMQ) on Tfh cells in vitro. (a) The frequency of CD4+CXCR5+ lymphocytes, representative expression of ICOS, PD-1 and
BCL-6 in Tfh cells after treatment with imiquimod in vitro by flow cytometry. (b) Cytokine expression in culture supernatants analyzed by ELISA, and mRNA
expression of Il-21 measured by Taqman-PCR. (c) mRNA expression of Bcl-6, Batf3, c-Maf, Nfatc2, Stat3, Prdm1 and Stat5 were measured by Taqman-PCR. Values are
the mean and SD of 3 independent experiments. *P < 0.05, **P < 0.01 and ***P < 0.001.
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upregulated (Fig. 2d). Batf3 was not detected. Taken together, these
data suggested that TLR7 signals could downregulate the differentiation
of Tfh cells.

Tfh cells have a direct effect on B cells and facilitate GC formation.
Thus, we further examined the contribution of TLR7 signals to the de-
velopment of B cell responses. Splenic GC formation was determined by
the flow cytometry analysis of B220+GL-7+cells, which were described
as GC B cells (Supplementary Fig. 5A). In parallel with effects on Tfh
cells, we found the frequency of B220+GL-7+GC B cells and memory B
cells in the spleen was significantly decreased after mice were treated
with imiquimod (Fig. 2b). Consistent with the frequency of B cells, the
levels of serum IgG, IgG1, and IgG3 were significantly reduced in mice
treated with imiquimod. There was no effect on the levels of IgG2a/b,
IgA, and IgM (Fig. 2e).

3.3. Imiquimod suppressed Tfh cells in MRL/lpr mice

In order to observe the potential biological and clinical relevance of
our results, we detected whether stimulation of TLR7 with imiquimod
could mediate Tfh cell differentiation in an SLE mouse model.

Consistent with previous findings that autoimmune MRL/lpr mice ex-
hibited splenomegaly with an expansion of Tfh cells in the spleen, our
results revealed that MRL/lpr mice had a significantly higher propor-
tion of CD4+CXCR5+cells as compared with BALB/c mice (Fig. 3a and
Supplementary Fig. 4A-c). We also analyzed the expression of addi-
tional cellular molecules, including ICOS and PD-1. Our results showed
significantly increased expression of ICOS and PD-1 in MRL/lpr mice as
compared with BALB/c mice (Fig. 3a and Supplementary Fig. 4A-d/e).
Expression of BCL-6 was also consistent with the frequency of Tfh cells
(Fig. 3a and Supplementary Fig. 4B). IL-21 levels were increased in the
sera of MRL/lpr mice as compared to BALB/c mice (Fig. 3b), and the
mRNA expression of Il-21 correlated with the protein results (Fig. 3b).
This prompted us to examine whether the TLR7 agonist imiquimod
could affect the expansion of Tfh cells. The results showed that the
frequency of Tfh cells was significantly reduced in the spleen of mices
treated with imiquimod (Fig. 3a). Furthermore, imiquimod also in-
hibited the expression level of IL-21 (Fig. 3b) in MRL/lpr mice.

Previous research has revealed a strong positive correlation between
the increased number of Tfh cells and the pathogenesis and severity of
disease in GC-dependent autoimmune conditions. MRL/lpr mice

Fig. 2. Effects of TLR7 agonist imiquimod on Tfh cells, B cells response and antibody secretion in BALB/c mice. (a) The percentages of CD4+CXCR5+ lymphocytes,
and representative expression of ICOS, PD-1 and BCL-6 Tfh cells in the spleen of BALB/c mice after treatment with imiquimod. (b) The percentages of B220+GL-
7+GC B cells and gG1+CD19+B cells in splenocytes of BALB/c mice. (c) Cytokine expression in serum of BALB/c mice analyzed by ELISA, and mRNA expression of Il-
21 measured by Taqman-PCR. (d) mRNA expression of Bcl-6, Batf3, c-Maf, Nfatc2, Stat3, Prdm1 and Stat5 were measured by Taqman-PCR. (e) Levels of antibody in
serum of BALB/c mice was analyzed by ELISA. Values are the mean and SD of 5 mice per group, *P < 0.05, **P < 0.01 and ***P < 0.001.
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exhibited splenomegaly (Fig. 4a), significantly increased IgG deposits in
the glomeruli (Fig. 4c), significantly enhanced plasma levels of anti-
dsDNA antibodies and ANA (Fig. 4b), and significantly enhanced levels
of IgA, IgM, IgG, and IgG subtypes (Fig. 5b). We were surprised to find
that severity of disease was reduced, and the levels of serum anti-
dsDNA, ANA, IgG, IgG1, IgG2a, IgG3, IgA, and IgM (Figs. 4b and 5b)
were significantly decreased in MRL/lpr mice after imiquimod treat-
ment.

The development of GC B cells and antibody-producing plasma cells
within the GC needs the help of Tfh cells. As such, we analyzed the
levels of B cells and found that the number of Tfh cells in splenocytes
was positively correlated with disease activity and B cells in MRL/lpr
mice. Our results implied that the percentage of GC B cells (B220+GL-
7+) and plasma B cells (CD19+IgG1+) was significantly higher in
MRL/lpr mice as compared to BALB/c mice (Fig. 5a and Supplementary
Fig. 5A/B), and these cell types were downregulated in MRL/lpr mice

Fig. 3. TLR7 agonist imiquimod suppressed Tfh cells in MRL/lpr mice. (a) The percentages of CD4+CXCR5+ lymphocytes, representative expression of ICOS, PD-1
and BCL-6 Tfh cells in the spleen of MRL/lpr mice and BALB/c mice after treatment with imiquimod by flow cytometry. (b) Leves of Cytokine in serum of MRL/lpr
mice and BALB/c mice was analyzed by ELISA, and mRNA expression of Il-21 measured by Taqman-PCR. Values are the mean and SD of 5 mice per group.
*P < 0.05, **P < 0.01 and ***P < 0.001.
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after imiquimod treatment. We also analyzed the expression of several
transcription factors and found that there was a significant down-
regulation in the mRNA expression level of Bcl-6, c-Maf, Batf3, Nfatc2,
and Stat3 in the CD4+ T cells of MRL/lpr mice, which was consistent
with our results in Tfh cells after treatment with imiquimod. However,
Prdm1 and Stat5b were upregulated in MRL/lpr mice after treatment
with imiquimod (Fig. 6).

4. Discussion

Recent studies have elucidated a previously undisclosed function for
TLR7 in CD4+T cells that is opposite to its role in innate immune cells
[12]. Previous studies have revealed pathways involving the inhibition
of the activation and function of CD4+T cells by TLR7 [12]. As a newly
identified CD4+T cell subset, Tfh cells provide essential help to B cells,
especially in the GC reaction [20,22–24]. Therefore, it is likely that Tfh
cells exacerbate the pathogenesis of autoimmune diseases [25–27].
Moreover, TLR7 ligands may act as a target to inhibit Tfh cells during
human autoimmune disease. Here, we demonstrated that activation of
TLR7 in CD4+T cells by its agonist imiquimod decreased the number of
Tfh cells. As is known, Tfh cells assist B cells by expressing certain
surface molecules, including ICOS, PD-1, and cytokine IL-21, which are
crucial for GC B cells [28–31]. In this study, our results showed that the
treatment of TLR7 in CD4+T cells resulted in an obvious decrease in the
levels of ICOS and PD-1 on Tfh cells. Moreover, our results also showed
a decrease in IL-21 upon stimulation of TLR7. Bcl-6 plays a predominant

role in regulating Tfh cells and is repressed by the transcription factor of
Blimp-1. The antagonizing interaction of Bcl-6 with Blimp-1 is essential
for T cell differentiation [32–34].Our results showed that stimulation of
TLR7 decreased expression of Bcl-6, but increased expression of Prdm1,
which encodes Blimp-1 [35]. Also, aside from Bcl-6, other transcription
factors have also been indicated as the moderators of Tfh cell differ-
entiation. Transcription factors that are positive moderators of Tfh cell
differentiation include Stat3, Batf, c-Maf, and Nfatc2 [36], and tran-
scription factors that are negative moderators include Stat5 and Blimp-1
[37–42]. Our findings showed that all of the above transcription factors
could be regulated by the stimulation of TLR7.

Our results have potential clinical implications, as some studies
have implied that the aberrant differentiation of Tfh cells is sig-
nificantly correlated with SLE pathogenesis. Additionally, aberrant Tfh
cell activity leads to the pathogenesis of SLE through abnormal GC
formation and massive anti-dsDNA and ANA production [19,43,44].

Tfh cells induce these phenomena via cytokines and co-stimulatory
molecules, which stimulate B cells [19]. Thus, Tfh cells should be
strongly associated with preventing autoimmunity by restricting GC
reactions to self-antigen. Here, we found that MRL/lpr mice showed a
reduction in renal injury and levels of autoantibodies after treatment
with the TLR7 agonist imiquimod. We demonstrated that autoimmune
phenotypes were alleviated when Tfh cell differentiation was down-
regulated in MRL/lpr mice after treatment with the TLR7 agonist imi-
quimod. Although there are few studies regarding TLR signaling in Tfh
cells, our study showed a previously undescribed negative effect of the

Fig. 4. TLR7 agonist imiquimod ameliorating the Progression of the SLE on MRL/lpr mice. (a) Splenomegaly in MRL/lpr mice and alleviated after treatment with
imiquimod. (b) levels of anti-dsDNA antibodies, ANA, c-d, IgG deposits in glomeruli of MRL/lpr mice and BALB/c mice. Sections of kidney tissue were stained with H
&E c and Immunofluorescence IgG. (d) Original magnification × 200. The scale bar in each image represents 100 μm. Values are the mean and SD of 5 mice per
group, *P < 0.05, **P < 0.01 and ***P < 0.001.
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Fig. 5. TLR7 agonist imiquimod suppressed B cells in MRL/lpr mice. (a) The percentages of B220+GL-7+B cells and IgG1+CD19+B cells in splenocytes of MRL/lpr
mice and BALB/c mice. (b) Levels of IgG, IgG subset, IgM and IgA in serum of MRL/lpr mice and BALB/c mice were analyzed by ELISA. Values are the mean and SD of
5 mice per group, *P < 0.05, **P < 0.01 and ***P < 0.001.

Fig. 6. mRNA relative expression of transcription factors in CD4+T cells from spleen in MRL/lpr mice. mRNA expression of Bcl-6, Batf3, c-Maf, Nfatc2, Stat3, Prdm1
and Stat5 were measured by Taqman-PCR. Values are the mean and SD of 5 mice per group, *P < 0.05, **P < 0.01 and ***P < 0.001.
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TLR signaling pathway on Tfh cell differentiation and IL-21 secretion,
which was shown to be upregulated in SLE patients as compared to
healthy controls. Furthermore, IL-21 expression was reported to elevate
the production of Tfh-related transcription factors, such as Batf, in
human SLE patients. Studies have elucidated that the development of
Tfh cells is partly controlled by Batf-mediated direct regulation of Bcl-6
and c-Maf, while the latter is essential for IL-21 production. Also, Batf
has an effect on GC development by promoting the generation of Tfh,
and GC B cell Stat-mediated cytokine signaling pathways are also im-
portant regulators of T helper cell development [38]. Stat3 is thought to
be crucial for Tfh cell differentiation [38]. Stat5 efficiently suppresses
Tfh differentiation by decreasing the mRNA expression of Tfh-asso-
ciated genes, such as c-Maf, Bcl-6, Batf, and Il-21 [38]. As a Tfh In-
hibitor, Blimp-1 can suppress the expression of Bcl-6, c-Maf, Cxcr5, and
Pd-1 [40]. Blimp-1 can also decrease PD-1 expression by directly sup-
pressing the role of Nfat2 or by replacing Nfat2 bound to the Pdcd1
gene. Though there are numbers of Nfat2 expressed in Tfh cells, little is
known about the functions of Nfat family members in Tfh cells. NFAT
proteins are important T cell receptors and Ca2+-dependent regulators
of T cell biology, supporting the major positive roles that NFAT family
members play in Tfh differentiation [45–49]. Our results suggest that
TLR7 inhibits Tfh cell differentiation, most likely by regulating these
transcription factors.

In conclusion, we have disclosed a new role for TLR7 in Tfh cell
function that is completely opposite to its role in innate immune cells.
This may represent a novel mechanism by which PAMPs inhibit adap-
tive immune responses. Moreover, the TLR7 agonist imiquimod may be
used to induce “tolerance” in Tfh cells during human autoimmune
diseases.
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